skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zaheer, Nisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum dot color converters (QDCCs) are a leading technology for enhancing the gamut and efficiency of displays, notably in QD‐OLED TVs and monitors. However, cadmium‐free QDs require thick layers for effective color conversion. Our novel inorganic photoresist densely packs InP QDs, achieving over 60% PLQY and optical density of 1 at less than 10 µm thickness, advancing QDCCs for high‐performance microLED displays. Patterning of 5 µm pixels with high fidelity is also demonstrated. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We demonstrate a scalable fabrication method for microLED displays using photopatternable InP-based QDs. Using photosensitive ligands, we demonstrate pixel resolutions of 10 μm with EQE of >40% in <10 μm thickness. Accelerated reliability is measured and modeled to calculate an expected lifetime of >10k hours for direct-view microLED operating conditions. 
    more » « less
  3. Quantum Dot downconverters can provide a scalable solution to tri‐color high‐resolution microLED and OLED displays by converting monochrome displays using photopatternable red and green QDs. Using internal measurements collected at NanoPattern Technologies, Inc. we model and discuss the practical wall plug efficiencies for downconverted InGaN blue microLED displays. In the range of 5 μm pixel sizes, using uncorrected 65 % film PLQY, the downconverted InGaN red emitter achieves a comparable external quantum efficiency compared to a direct red emitting AlInGaP when compared at practical current densities for microLED drivers. 
    more » « less